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The simplest measurement one can take with the spin detector is scatter-
ing asymmetry, for a fixed geometry of the rotator and target magnetization.
The normalized scattering asymmetry A in the Ferrum detector is a measured
quantity given by:

A =
IM+ − IM−

IM+ + IM−
(1)

with IM+ and IM+ the scattered intensity as measured by the channeltron,
for positive and negative target magnetizations respectively.

In a simplified description we could say that the scattering intensity is given
by the scattering cross section:

σ = σ0(1 + S(P⃗ · M̂)) (2)

with S the effective Sherman function (0.29 for the Ferrum detector at Bloch),

σ0 the background spin-independent cross section, P⃗ the polarization vector of
the incoming electron beam and M̂ the magnetization direction of the target.

Sanity check: When S=1, we obtain maximum asymmetry with limiting val-
ues of σ = 0 and σ = σ0 for polarizations parallel and anti-parallel to the target.
When S=0, we obtain zero asymmetry with σ = σ0 for both polarizations.

Px/Py components

We consider first only the P⃗X component, when using a ‘rotator +’ setting.
After the rotator has acted, we have for the geometry at Bloch (see Fig 1):

P⃗X · M̂+ =
1√
2
||P⃗X || (3)

P⃗X · M̂− = − 1√
2
||P⃗X || (4)
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Figure 1: Bloch spin detector geometry, shown measuring a pure +PX electron
beam in the configuration Coil2 minus, Rotator +

Combining these, we can write the P⃗X contribution to AR+ as:

AR+,P⃗X
=

(
1 +

(
S||P⃗X ||√

2

))
−
(
1 +

(
−S||P⃗X ||√

2

))
(
1 +

(
S||P⃗X ||√

2

))
+
(
1 +

(
−S||P⃗X ||√

2

)) (5)

=

2S||P⃗X ||√
2

2
(6)

=
S||P⃗X ||√

2
(7)

(8)

Similar considerations for the P⃗Y component (see Fig 2) give:

P⃗Y · M̂+ = − 1√
2
||P⃗Y || (9)

P⃗Y · M̂− =
1√
2
||P⃗Y || (10)
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Figure 2: Bloch spin detector geometry, shown measuring a pure +PY electron
beam in the configuration (coil 2 minus, rotator -)

with a P⃗Y contribution to AR+ of:

AR+,P⃗Y
=

(
1 +

(
−S||P⃗Y ||√

2

))
−
(
1 +

(
S||P⃗Y ||√

2

))
(
1 +

(
−S||P⃗Y ||√

2

))
+
(
1 +

(
S||P⃗Y ||√

2

)) (11)

=
− 2S||P⃗Y ||√

2

2
(12)

=
−S||P⃗Y ||√

2
(13)

(14)

Since the ||P⃗Z || has no projection onto the Coil 2 magnetization axis for any
rotator setting, we now know enough to describe the total AR+:

AR+ =
S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

(15)

Now we go through the same steps for the ‘rotator -’ setting.
For P⃗X component, after the rotator has acted we have: (see Fig 3):

3



Figure 3: Bloch spin detector geometry, shown measuring a pure +PX electron
beam in the configuration (coil 2 minus, rotator -)

P⃗X · M̂+ = − 1√
2
||P⃗X || (16)

P⃗X · M̂− =
1√
2
||P⃗X || (17)

AR−,P⃗X
=

(
1 +

(
−S||P⃗X ||√

2

))
−
(
1 +

(
S||P⃗X ||√

2

))
(
1 +

(
−S||P⃗X ||√

2

))
+
(
1 +

(
S||P⃗X ||√

2

)) (18)

=
− 2S||P⃗X ||√

2

2
(19)

=
−S||P⃗X ||√

2
(20)

(21)

While for the P⃗Y component, after the rotator has acted we have: (see Fig
4):
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Figure 4: Bloch spin detector geometry, shown measuring a pure +PY electron
beam in the configuration (coil 2 minus, rotator -)

P⃗Y · M̂+ = − 1√
2
||P⃗Y || (22)

P⃗Y · M̂− =
1√
2
||P⃗Y || (23)

AR−,P⃗Y
=

(
1 +

(
−S||P⃗Y ||√

2

))
−
(
1 +

(
S||P⃗Y ||√

2

))
(
1 +

(
−S||P⃗Y ||√

2

))
+
(
1 +

(
S||P⃗Y ||√

2

)) (24)

=
− 2S||P⃗Y ||√

2

2
(25)

=
−S||P⃗Y ||√

2
(26)

(27)

with the total AR− given by:

AR− =
−S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

(28)

At this point, a key insight is that we can disentangle the P⃗X and P⃗Y com-
ponents by taking the sum and difference of these two asymmetries:

AR+ −AR− =

(
S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

)
−

(
−S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

)
(29)

=
2S||P⃗X ||√

2
(30)

=
√
2S||P⃗X || (31)
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||P⃗X || = 1√
2S

(
AR+ −AR−

)
(32)

AR+ +AR− =

(
S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

)
+

(
−S||P⃗X ||√

2
+

−S||P⃗Y ||√
2

)
(33)

=
−2S||P⃗Y ||√

2
(34)

= −
√
2S||P⃗Y || (35)

||P⃗Y || = − 1√
2S

(
AR+ +AR−

)
(36)

Pz component

Obtaining P⃗Z is considerably simpler, since this component arrives to the target
aligned to the ’coil 1’ magnetization axis and the rotator has no influence.

Figure 5: Bloch spin detector geometry, shown measuring a pure +PZ electron
beam in the configuration (coil 1 minus)

P⃗Z · M̂+ = ||P⃗Z || (37)

P⃗Z · M̂− = −||P⃗Z || (38)

A =

(
1 +

(
S||P⃗Z ||

))
−
(
1 +

(
−S||P⃗Z ||

))
(
1 +

(
S||P⃗Z ||

))
+
(
1 +

(
−S||P⃗Z ||

)) (39)

=
2S||P⃗Z ||

2
(40)

= S||P⃗Z || (41)

(42)

6



||P⃗Z || = A/S (43)

What if the rotator orientation were opposite?

This would require swapping the AR+ and AR− terms. Since the ||P⃗Y || com-
ponent is given by the asymmetry sum, it would be unaffected. If the rotator
action were the opposite to our assumption, the effect would be an inversion
of all ||P⃗X || components.

What if the target magnetization were opposite?

This would invert the sign of all P⃗ · M̂ terms. If the magnetization direction
were the opposite to our assumption, the effect would be an inversion of
all 3 components.

Component intensities

It is common to resolve the total, spin integrated intensity Itotal into two spin-
resolved ‘component intensities’ or ‘partial intensities’. For spin polarization
along the x axis, the component intensities are given by:

C+ =
Itotal
2

(
1 + Px

)
(44)

C− =
Itotal
2

(
1− Px

)
(45)

It is straightforward to confirm that C++C− = Itotal as expected, and that
for limiting values of Px = ±1 we obtain C± = Itotal and C∓ = 0.

Error bars

Here we will consider only statistical errors from the channeltron signal. It is
important to recognize that many other, potentially much larger sources of error
can be introduced by independent factors such as poor beam alignment.

For simplicity we begin with the Pz component, for which only two measure-
ments are needed. The statistical error associated with a measurement from a
channeltron is generally considered to be governed by Poisson statistics, such
that:

∆N =
√
N (46)

We can use Eqn 1 from earlier to propagate the error of the two channel-
tron measurements (±target magnetization) into the error in the asymmetry.
Following the derivation described in Kessler p242:
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∆A2 =

(
∂A

∂NM+

)2

(∆NM+)
2 +

(
∂A

∂NM−

)2

(∆NM−)
2 (47)

=

(
2NM−

(NM+ +NM−)2

)2

NM+ +

(
−2NM+

(NM+ +NM−)2

)2

NM− (48)

Letting N = NM+ +NM−, we obtain:

∆A2 =
4NM+NM−

N3
(49)

We’re now able to do a simplification trick. Since we know from Eqn 43 that
A = SPZ , we can construct the term:

1− S2P 2
Z = 1−A2 (50)

= 1−
(
NM+ −NM−

NM+ +NM−

)2

(51)

=
4NM+NM−

N2
(52)

This allows us to simplify Eqn 49 to:

∆A =

√
1− S2P 2

Z

N
(53)

Combining Eqns 43 and 53, we have:

∆PZ =
∆A

S
(54)

=
1

S

√
1− S2P 2

Z

N
(55)

=

√
1

N

(
1

S2
− P 2

Z

)
(56)

(57)

One could interpret the term 1
S2 − P 2

Z as ‘how much information does each
detection convey?’. This depends on both the Sherman function of the detec-
tor and the polarization of the beam. In the limit S=1, P=±1, there is zero
uncertainty and a single scattered electron count would be sufficient to know
the state of the beam. Here in the real world we’re seldom close to these limits
and more detections are needed ( 1

N term) in order to resolve the signal from the
noise. For contemporary spin detectors the 1

S2 term (≈12 if S=0.29) dominates
the P 2

Z term (maximum 1) and a common approximation is to ignore the P 2
Z

term:
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∆PZ =

√
1

NS2
(58)

It follows from Eqn 54 that:

∆AZ =

√
1

N
(59)

Here the Sherman function has dropped out, but this seems reasonable: it
changes only the magnitude of the asymmetry, not our certainty about it.

For the component intensities C± defined in Eqns 44 and 45, we will have:

∆C2
± =

(
∂C±

∂P

)2

(∆P )2 (60)

∆C± =
N

2
(∆P ) (61)

=
N

2

√
1

NS2
(62)

(63)

But what of the Px/Pz components, which in our somewhat unusual (Ferrum
+ rotator) setup involves combining the results of 4 channeltron measurements?
(±target magnetization, ±rotator). Is it valid to simply sum the four intensities
and reuse equation 59?

An analogous derivation to the one above would begin with propagating the
errors for the sum and for the difference of the asymmetries with the different
rotator settings, i.e. starting from

PX =

√
2

2S
ADIFF (64)

PY = −
√
2

2S
ASUM (65)

where for notational convenience we are taking:

ADIFF = AR+ −AR− (66)

ASUM = AR+ +AR− (67)

and will also define the channeltron counts for the four different configura-
tions as:

a = NM+
R+

b = NM−
R+

c = NM+
R−

d = NM−
R−

(68)

9



∆(ADIFF )
2 =

(
∂ADIFF

∂a

)2

(∆a)2 +

(
∂ADIFF

∂b

)2

(∆b)2 +

(
∂ADIFF

∂c

)2

(∆c)2 +

(
∂ADIFF

∂d

)2

(∆d)2

(69)

=

(
4ab

(a+ b)3
+

4cd

(c+ d)3

)
(70)

∆(ASUM )2 =

(
∂ASUM

∂a

)2

(∆a)2 +

(
∂ASUM

∂b

)2

(∆b)2 +

(
∂ASUM

∂c

)2

(∆c)2 +

(
∂ASUM

∂d

)2

(∆d)2

(71)

=
4ab

(a+ b)3
+

4cd

(c+ d)3
(72)

As expected, the error doesn’t depend on whether we add or subtract the
terms! The error of the individual asymmetry terms AR+ and AR− may differ,
but the sum and difference of them should should have the same error. So for
simplicity, we’ll only refer to ASUM in what follows.

A substitution trick in the spirit of what we did for Pz would suggest the
terms:

1−A2
R+ =

4ab

(a+ b)2
= 1− S2

2
(PX − PY )

2 (73)

and:

1−A2
R− =

4cd

(c+ d)2
= 1− S2

2
(−PX − PY )

2 (74)

Substituting this into our expression for (∆ASUM )2, we get:

(∆ASUM )2 =
1

(a+ b)

4ab

(a+ b)2
+

1

(c+ d)

4cd

(c+ d)2
(75)

=
1

(a+ b)

(
1− S2

2
(PX − PY )

2

)
+

1

(c+ d)

(
1− S2

2
(−PX − PY )

2

)
(76)

(77)

Now since PY = − 1√
2S

ASUM , we can say:
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(∆PY )
2 =

1

2S2
(∆ASUM )2 (78)

=
1

2S2

[
1

(a+ b)

(
1− S2

2
(PX − PY )

2

)
+

1

(c+ d)

(
1− S2

2
(−PX − PY )

2

)]
(79)

=
1

2S2(a+ b)
− (PX − PY )

2

4(a+ b)
+

1

2S2(c+ d)
− (−PX − PY )

2

4(c+ d)
(80)

=
1

2(a+ b)

(
1

S2
− (PX − PY )

2

2

)
+

1

2(c+ d)

(
1

S2
− (−PX − PY )

2

2

)
(81)

(82)

We can now make the same approximation as was used for ∆PZ , noting that
the 1

S2 terms (≈12) will dominate the 1
2 (±PX −PY )

2 term (maximum 2). This
reduces our expression to:

(∆PY )
2 =

1

2

(
1

S2(a+ b)
+

1

S2(c+ d)

)
(83)

When deriving the error term for Pz we used N to denote the sum of counts
for the two configurations in the measurement. We’re now making four mea-
surements in a Px/Py set,and since typically the countrate is similar for the two
rotator settings, we can say (a+ b) = (c+ d) = N . Substituting that in gives:

∆PY =

√
1

2

(
2

S2N

)
(84)

=

√
1

NS2
(85)

(86)

i.e. for the same countrate and the same total measurement time per con-
figuration, the statistical error on the PX,Y measurements is the same as for a
PZ measurement.

But be careful about the definition of N here. For Pz this is the total number
of counts across the two target magnetization measurement sets. For Px/Py it
is half the total number of counts across all four of the measurements sets.
N = (a+ b) = (c+ d), N ̸= (a+ b+ c+ d)
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